Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 13(27): 18779-18787, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37350863

RESUMO

Hydrothermal synthesis of pristine and Sr doped TiO2 is proposed. The synthesized products were studied for their physiochemical properties. 3% Sr-TiO2 showed a narrow bandgap, which facilitate an increase in oxygen vacancies. The agglomerated morphology was tuned to a nanoball structure after doping with Sr ions. Surface area was increased for the Sr doped TiO2. The samples were used to reduce Janus Green B (JG) dye as a model pollutant. The pure TiO2 showed poor efficiency, while the prepared Sr-TiO2 photocatalyst showed enhanced efficiency with a corresponding increase in the rate constant values of the samples. Tuning of the bandgap, an improvement in the morphology and an increase in the surface area were the major positives of the Sr doped TiO2 samples compared to pure TiO2, 3% Sr-TiO2 is emerging as the best photocatalyst in reducing toxic pollutants. The 3% Sr-TiO2 is a promising candidate for water remediation in the future.

2.
ChemSusChem ; 15(8): e202102189, 2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35289479

RESUMO

While extensive research has driven the rapid efficiency trajectory noted to date for organic-inorganic perovskite solar cells (PSCs), their thermal stability remains one of the key issues hindering their commercialization. Herein, a significant reduction in surface defects (a precursor to perovskite instability) could be attained by introducing triphenylphosphine (TPP), an effective Lewis base passivator, to the vulnerable perovskite/spiro-OMeTAD interface. Not only did TPP passivation enable a high power conversion efficiency (PCE) of 20.22 % to be achieved, these devices also exhibited superior ambient and thermal stability. Unlike the pristine device, which exhibited a sharp descend to 16 % of its initial PCE on storing in relative humidity of 10 %, at 85 °C for more than 720 h, the TPP-passivated devices retained 71 % of its initial PCE. Hence, this study presents a facile yet excellent approach to attain high-performing yet thermally stable PSCs.

3.
Environ Res ; 210: 112904, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35182596

RESUMO

A new 2D transition metal carbides family noted that MXene with antimony (Sb) nano-needles composites have demonstrated potential applications for photocatalytic dye degradations applications. Single-step synthesis of novel structures two/one-dimensional MXene@antimony nanoneedle (MX@Sb-H) nanocomposite-based photocatalysts is produced employing hydrothermal technique. The preparations and characterizations were compared with hand mixture preparations of pure TiO2@Sb and MXene (MX@Sb-M). The crystallographic structure was identified employing X-ray diffraction (XRD) studies and main sharp XRD peaks were observed with diffraction angle with orientations planes for all three samples TiO2@Sb, MX@Sb-M and MX@Sb-H. The micro-Raman spectroscopy explored key vibration modes centered at 151.72 and 637.52 cm-1 corresponding to Ti and Sb hybrid composites respectively. Fourier transform infrared spectroscopy (FTIR) spectrum of functional group peaks at 609.16 and 868.80 cm-1 revealed Ti-OH/Sb-O-C stretching. The morphological investigations of horizontal growth for "Sb" nanoneedle on MXene nanosheets were explored by scanning electron microscopy (SEM). The degradation efficiency was calculated. The efficiency calculated were 27%, 38%, 68% and 82% for MB solution, TiO2@Sb added MB, MX-Sb-M added MB and MX-Sb-H added MB solution and the efficiency were 32%, 38%, 50% and 65% for pure RhB solution, TiO2@Sb added RhB, MX-Sb-M added RhB and MX-Sb-H added RhB solution. The photocatalytic activity of TiO2@Sb, MX@Sb-M and MX@Sb-H was examined. Among these MX@Sb-H nanocomposite was demonstrated the high photocatalytic action in expressions of rate stability of photocatalytic dye degradations.


Assuntos
Poluentes Ambientais , Nanocompostos , Antimônio , Catálise , Nanocompostos/química , Titânio/química
4.
Environ Res ; 200: 111528, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34139226

RESUMO

Wastewater management is becoming a serious issue worldwide. To enhance the reuse of wastewater, one has to remove toxic pollutants present in it. High amount of dye is present in wastewater, and to remove these dyes is the large scope of this research. Herein, we report production of pure and Ce-doped copper ferrite via hydrothermal route. The synthesized nanoparticles were collected and analyzed by basic characterization techniques. The bandgap energy calculated for pure, 1% Ce, and 2% Ce-doped CuFe2O4 was found to be 2.77, 2.57, and 2.36eV, respectively. Reduction in bandgap was attributed to the doping element. The shape and size of pure and Ce-doped products were investigated using a scanning electron microscope. Agglomeration was observed in the pure copper ferrite sample. In the Ce-doped sample, agglomeration was clearly reduced and the 2% Ce-doped CuFe2O4 sample showed growth of small nanoparticles. They showed complete growth and were arranged in a uniform manner without agglomeration. The surface area of the 2% Ce-CuFe2O4 sample was found to be 65.89 m2/g with 7.02 nm pore diameter. The photocatalytic activity of the prepared material was observed for rhodamine B degradation. The pure and catalyst-added dye was exposed under visible light. The samples were tested for UV. The efficiency obtained for pure dye solution, pristine CuFe2O4-added, and 1% Ce and 2% Ce-doped CuFe2O4-added dye solutions were 48%, 50%, 66%, and 88% within 2 h of irradiation. The 2% Ce-doped CuFe2O4 sample showed excellent photocatalytic activity as the bandgap and morphology were enhanced by doping an appropriate ratio of Ce ions.


Assuntos
Óxido de Alumínio , Óxido de Magnésio , Catálise , Rodaminas
5.
Chemosphere ; 282: 131033, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34102489

RESUMO

This paper reported the successful preparation and characterization of bio-activated carbon nanosheets (ACNSs) synthesized from tamarind (tamarind indicia) fruits shells (TFSs) by employing Chemical Vapor Deposition (CVD) tubular furnace. The preparation of pure ACNSs and also potassium hydroxide (KOH) activated carbon nanosheets (K-ACNSs) were made through a pyrolysis process with Argon (Ar) gas as an inert gas at 800 °C for 2h 30min, followed by further purifications of K-ACNSs. The scanning electron microscope (SEM) images of ACNSs and K-ACNSs explored with and without pores respectively. The SEM micrographs also explored 3D-porous microstructure sheets with thickness around 18-65 nm. Raman spectroscopy explored crystallinity, SP2 order and graphitization at 1577-1589 cm-1. The major functional groups were also observed. The photoluminescence (PL) was analyzed for K-ACNSs materials and revealed carbon emission broad peak value at 521.3 nm. As prepared ACNSs and K-ACNSs active materials was applied for three-electrode materials of energy storage supercapacitor analysis of cyclic voltammeter for -0.4 - 0.15 V at scan rates of 10-100 mV/s. The electrochemical impedance spectroscopy (EIS) was performed with low Rct values of K-ACNSs as 0.65Ω when compared to pure ACNSs as 5.03Ω. Mainly, the galvanostatic charge-discharge test carried out in ACNSs and KCNSs materials was corresponded to 77 and 245.03 F/g respectively, with respect to 1 A/g current density. Finally, we promise that this reported novel tamarind bio-waste into conductive porous carbon nanosheets could develop future energy storage applications of biomass-derived carbons.


Assuntos
Carvão Vegetal , Tamarindus , Biomassa , Frutas , Porosidade
6.
Sci Rep ; 10(1): 19198, 2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-33154400

RESUMO

The growth in energy devices and the role of supercapacitors are increasingly important in today's world. Designing an electrode material for supercapacitors using metals that have high performance, superior structure, are eco-friendly, inexpensive and highly abundant is essentially required for commercialization. In this point of view, quaternary chalcogenide Cu2NiSnS4 with fascinating marigold flower like microstructured electrodes are synthesized using different concentrations of citric acid (0, 0.05 M, 0.1 M and 0.2 M) by employing solvothermal method. The electrode materials physicochemical characteristics are deliberated in detail using the basic characterization techniques. The electrochemical studies revealed better electrochemical performances, in particular, Cu2NiSnS4@0.1 M-CA electrode revealed high 1029 F/g specific capacitance at 0.5 A/g current density. Further, it retained 78.65% capacity over 5000 cycles. To prove the practical applicability, a full-cell asymmetric solid-state device is fabricated, and it delivered 41.25 Wh/Kg and 750 Wh/Kg energy and power density at 0.5 A/g. The optimum citric acid added Cu2NiSnS4 electrode is shown to be a promising candidate for supercapacitor applications.

7.
RSC Adv ; 10(33): 19410-19418, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35515465

RESUMO

So far, numerous metal oxides and metal hydroxides have been reported as an electrode material, a critical component in supercapacitors that determines the operation window of the capacitor. Among them, nickel and cobalt-based materials are studied extensively due to their high capacitance nature. However, the pure phase of hydroxides does not show a significant effect on cycle life. The observed XRD results revealed the phase structures of the obtained Ni(OH)2 and Co-Ni(OH)2 hydroxides. The congruency of the peak positions of Ni(OH)2 and Co-Ni(OH)2 is attributed to the homogeneity of the physical and chemical properties of the as-prepared products. The obtained results from XPS analysis indicated the presence of Co and the chemical states of the as-prepared composite active electrode materials. The SEM analysis revealed that the sample had the configuration of agglomerated particle nature. Moreover, the morphology and structure of the hydroxide materials impacted their charge storage properties. Thus, in this study, Ni(OH)2 and Co-Ni(OH)2 composite materials were produced via a hydrothermal method to obtain controllable morphology. The electrochemical properties were studied. It was observed that both the samples experienced a pseudocapacitive behavior, which was confirmed from the CV curves. For the electrode materials Ni(OH)2 and Co-Ni(OH)2, the specific capacitance (C s) of about 1038 F g-1 and 1366 F g-1, respectively, were observed at the current density of 1.5 A g-1. The Ni-Co(OH)2 composite showed high capacitance when compared with Ni(OH)2. The cycle index was determined for the electrode materials and it indicated excellent stability. The stability of the cell was investigated up to 2000 cycles, and the cell showed excellent retention of 96.26%.

8.
ACS Appl Mater Interfaces ; 7(33): 18460-6, 2015 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-26238224

RESUMO

We report a unique nanostructured electron-selective interlayer comprising of In-doped ZnO (ZnO:In) and vertically aligned CdSe tetrapods (TPs) for inverted polymer:fullerene bulkheterojunction (BHJ) solar cells. With dimension-controlled CdSe TPs, the direct inorganic electron transport pathway is provided, resulting in the improvement of the short circuit current and fill factor of devices. We demonstrate that the enhancement is attributed to the roles of CdSe TPs that reduce the recombination losses between the active layer and buffer layer, improve the hole-blocking as well as electron-transporting properties, and simultaneously improve charge collection characteristics. As a result, the power conversion efficiency of PTB7:PC70BM based solar cell with nanostructured CdSe TPs increases to 7.55%. We expect this approach can be extended to a general platform for improving charge extraction in organic solar cells.

9.
Nanoscale ; 6(15): 8585-9, 2014 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-24976080

RESUMO

High efficiency inverted organic solar cells are fabricated using the PTB7:PC71BM polymer by incorporating Zn-doped TiO2 (ZTO) and 0.05 wt% PEO:ZTO as interfacial electron transport layers. The 0.05 wt% PEO-modified ZTO device shows a significantly increased power conversion efficiency (PCE) of 8.10%, compared to that of the ZTO (7.67%) device.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...